Geostationary Earth Orbit Satellite

Nerd cafe

Part 1: Physics derivation of GEO orbit radius

Step 1: Equate gravitational force and centripetal force:

mv2r=GmMer2m\frac{v^{2}}{r}=G\frac{mM_{e}}{r^{2}}

where:

  • mm = satellite mass (will cancel out),

  • vv = orbital speed,

  • rr = distance from Earth's center,

  • G=6.67430×1011(m3.kg1.s2)G=6.67430\times 10^{-11}(m^{3}.kg^{-1}.s^{-2}) = gravitational constant,

  • Me5.972×1024M_{e}\simeq 5.972\times 10^{24}(kg)= mass of Earth

Step 2: Solve for vv:

v2=GMerv^{2}=\frac{GM_{e}}{r}

Step 3: Use orbital period formula.

For circular orbit, period TT is:

v=rω=r2πTT=2rπvv=r\omega=r\frac{2\pi}{T}\Rightarrow T=\frac{2r\pi}{v}

We want geostationary orbit, so:

T=24×60×60=86400    secondsT=24×60×60=86400\;\;seconds

Step 4: Substitute vv:

v=2rπTv=\frac{2r\pi}{T}

Now, from Step 2:

(2rπT)2=GMer\left( \frac{2r\pi}{T} \right)^{2}=\frac{GM_{e}}{r}

Step 5: Solve for rr

r3=G.Me.T24π2r42,164 kmr^{3}=\frac{G.M_{e}.T^{2}}{4\pi^{2}}\Rightarrow r≈42,164 km

Result: The geostationary orbit radius ≈ 42164 km from Earth’s center.

Step 6: Altitude above Earth’s surface

Earth’s mean radius ≈ 6378 km.

Altitude=421646378=35786 kmAltitude=42164−6378=35786 km

Therefore, GEO altitude ≈ 35786 km.

Part 2: Communication delay calculation

Now that we proved the altitude, let’s do the signal delay:

Step 1: Distance from surface ≈ 35786 km.

d=35786,000 md=35786,000 m

Step 2: Speed of light

c299792458 m/sc≈299792458 m/s

Step 3: Time = distance / speed

t=dc=357860002997924580.1194 secondst=\frac{d}{c}=\frac{35786000}{299792458}≈0.1194 seconds
  • One-way delay ≈ 119 ms.

  • Round-trip delay ≈ 238 ms.

Last updated