Geostationary Earth Orbit Satellite
Nerd cafe
Part 1: Physics derivation of GEO orbit radius
Step 1: Equate gravitational force and centripetal force:
mrv2=Gr2mMe where:
m = satellite mass (will cancel out),
r = distance from Earth's center,
G=6.67430×10−11(m3.kg−1.s−2) = gravitational constant,
Me≃5.972×1024(kg)= mass of Earth
Step 2: Solve for v:
v2=rGMe Step 3: Use orbital period formula.
For circular orbit, period T is:
v=rω=rT2π⇒T=v2rπ We want geostationary orbit, so:
T=24×60×60=86400seconds Step 4: Substitute v:
v=T2rπ Now, from Step 2:
(T2rπ)2=rGMe Step 5: Solve for r
r3=4π2G.Me.T2⇒r≈42,164 km Result: The geostationary orbit radius ≈ 42164 km from Earth’s center.
Step 6: Altitude above Earth’s surface
Earth’s mean radius ≈ 6378 km.
Altitude=42164−6378=35786 km Therefore, GEO altitude ≈ 35786 km.
Part 2: Communication delay calculation
Now that we proved the altitude, let’s do the signal delay:
Step 1: Distance from surface ≈ 35786 km.
d=35786,000 m Step 2: Speed of light
c≈299792458 m/s Step 3: Time = distance / speed
t=cd=29979245835786000≈0.1194 seconds Round-trip delay ≈ 238 ms.
Last updated